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Abstract

The proportional odds model is a regression model widely used for ordinal categor-
ical response, which has a rather strong underlying assumption, the proportional odds
assumption. The rejection of the null assumption, however, is not very informative
since a statistical significance does not necessarily imply a practical significance. This
paper discusses the limitation of the statistical significance test of the proportional
odds assumption, and proposes graphical methods that can be used to help assess the
practical significance of the assumption.

Keywords: Ordinal response, logistic regression, graphical methods.

1. Introduction

Categorical response variables measured on an ordinal scale (for example, none, mild, severe)

arise in many fields of study. The proportional odds model (McCullagh, 1980) is a popular

regression model for ordinal categorical response. The model utilizing the ordinal nature of

the response gives a simple interpretation since it can be considered as a regression model for

an underlying continuous response variable (Agresti 1990). But the assumption of the model,

the proportional odds assumption, is rather strong and needs to be checked. Some standard

statistical package produces the test result for the assumption. This test result, however, is

of only limited use for a practical purpose. When the null assumption of proportional odds

is rejected, we need to know how much it is violated in a practical sense.

This paper discusses the limitation of the null hypothesis test of the proportional odds

assumption, and proposes graphical methods that can be used to help assess the practical
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significance of the assumption. Section 2 presents the formulation of the proportional odds

model, and reports a simulation study which demonstrates the limitation of the null hypoth-

esis significance tests. Section 3 proposes graphical methods helping to measure the degree

of violation of the proportional odds assumption. The graphical methods are applied to a

real example in Section 4.

2. Statistical Significance vs. Practical Significance of

Test for Proportional Odds Assumption

We observe data of the form {(yi, xi1, xi2, · · · , xip); i = 1, · · · , n}. The ith response yi takes

a value in a set of ordered categories {1, 2, · · · , J}, and xi = (xi1, xi2, · · · , xip)
′ is a vector of

covariates for subject i. When response categories are ordered, the most popular model is

the proportional odds model

logit[Fx(j)] = log
Fx(j)

1− Fx(j)
= αj − x′β, j = 1, . . . , J − 1, (2.1)

where Fx(j) = P (Y ≤ j|x). It assumes proportional odds, i.e. equal slope parameter β for

all j.

SAS 6.12 (SAS Institute Inc., Cary, NC), specifically the SAS procedure PROC LOGIS-

TIC, performs a test for the appropriateness of the proportional odds assumption. For this

test the alternative model considered is

logit[Fx(j)] = αj − x′βj, (2.2)

for j = 1, . . . , J − 1. We assume in this paper that this model fits the data properly. The

null hypothesis tested for further reduction is that

β1 = β2 = · · · = βJ−1 = β (2.3)

or equivalently,

βm1 = βm2 = · · · = βm,J−1,

for all m = 1, · · · , p, where βmj is the mth element of βj. Since the test is comparing J − 1

parameters across p covariates, and its chi-squared score test statistic is evaluated at β̂ which
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is the maximum likelihood (ML) estimate under the null hypothesis, it has p×(J−2) degrees

of freedom. (cf. SAS/STAT User’s guide, version 6, fourth edition, p.1090)

The null hypothesis (2.3) is a strong assumption since it assumes on p sets of equal J − 1

parameters. We cannot expect this assumption to be true, nor do we need it to be in a strict

sense for a practical purpose. A simulation study is done to see how the test behaves for the

practically ignorable deviation of the slope parameter values from the null hypothesis.

The model considered for simulation is

logit[Fx(j)] = αj + β1jx1 − β2jx2 + · · ·+ (−1)p+1βpjxp, j = 1, . . . , J − 1, (2.4)

where

αj = log
j/J

1− j/J
, (2.5)

βij = 2(1 +
j − J/2

(J − 1)− J/2
· δ). (2.6)

The value of αj’s in (2.5) gives Fx(j) = j/J when x = 0. The null hypothesis (2.3) is true

when δ = 0 in (2.6), in which case the common slope is 2. The value of δ represents the

amount of deviation from the equal slope assumption since βi1, · · · , βi,J−1 are within the width

of 2×δ from the common slope 2. All covariates are independently generated from a uniform

distribution over the interval (0, 1). Then y can be generated from a multinomial distribution

with P (Y = j|x) = Fx(j)− Fx(j − 1). We generate n set of values (yi, xi1, xi2, · · · , xip), and

obtain the p-value of the test for the proportional odds assumption from the SAS procedure

PROC LOGISTIC.

We simulate each configuration 100 times, and calculate the mean of 100 p-values to

summarize 100 test results. PROC LOGISTIC reports p-value as .0001 (or < .0001 in

version 7.0 and higher of SAS) for any value less than .0001, so that we report up to three

decimal points of the mean p-value. We also report the estimated probability of rejecting

the null hypothesis under the significance level α = .05 in Table 1.

We consider that δ = .05 or δ = .1 gives practically equal slopes. This deviation from

the null hypothesis would not matter in practice, so that we might use the proportional odds

model for its simple interpretation. The test, however, detects such a negligible deviation
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given a large sample, and does not differentiate it from the practically significant one such

as δ = 1.0. Table 1 shows that as sample size gets larger the test gives a highly significant p-

value less than .010 even though the null hypothesis can be practically assumed to hold. This

simulation study demonstrates that we cannot depend solely on the test result. The next

section presents graphical methods to assess the practical significance of the assumption.

<< Table 1 around here>>

3. Graphical Methods to Assess the Proportional Odds

Assumption

We need to check the adequacy of the equal slope assumption more carefully when the test

gives a significant result. One natural method to assess the assumption (2.1) is to draw

confidence intervals of βi1, βi2, · · · , βi,J−1 simultaneously on one graph. One such graph is

illustrated in Figure 3 in the next section. Overlapping confidence intervals do not give

strong evidence against the assumption of a common slope. Even for the nonoverlapping

confidence intervals, we cannot exclude the possibility of a practically common slope since

the widths of intervals become narrower as the sample size gets larger, and the confidence

coefficient is for each interval, not for a family of intervals.

To tell whether the difference, if there is any, between βi1, · · · , βi,J−1 is practically im-

portant, the probabilities P (Y = j|x), j = 1, · · · , J − 1 are useful. If estimates of these

probabilities under (2.1) and (2.2) differ substantially, the violation of the null assumption

would be considered to be practically significant. On the other hand, if there is little differ-

ence between the estimates of the probabilities, the possible difference between βi1, · · · , βi,J−1

can be ignored for a practical purpose.

There is some difficulty in visualizing the probabilities, though. For each observation

(yi,xi) two vectors of probability estimates (P̂ (Yi = 1|x), P̂ (Yi = 2|x), · · · , P̂ (Yi = J − 1|x))

are defined under the model (2.1) and (2.2) respectively, and it is hard to visualize n pairs

of vectors. We circumvent this difficulty by plotting pairs of scalars P̂ (Yi = yi|x) under the
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model (2.1) and (2.2), denoted by p̂1i and p̂2i, respectively . The n points {(p̂1i, p̂2i); i =

1, . . . , n} are expected to be near the line of slope 1 if the null assumption holds. Figures

1 and 2 illustrate how the plots change according to the degree of the violation of the null

assumption. As (a) and (c) in Figures 1 and 2 show, the range of probabilities and the shape

of the plots depend on the number of the levels of response, the number and the range of

predictor variables, and the strength of the relationship between x and y. Hence, in order

to help judge the linearity of the plots, a reference plot is necessary.

The reference plot is proposed as follows:

1. Fit a proportional odds model (2.1) to a given set of data {(yi,xi); i = 1, · · · , n}, then

obtain the maximum likelihood estimates α̂j (j = 1, · · · , J − 1) and β̂.

2. Draw a new set of data {(y∗i ,xi); i = 1, · · · , n} based on the estimated propor-

tional odds model in the previous step. In other words, we simulate y∗i from a multinomial

distribution with the probability belonging to category j equal to F̂x(j) − F̂x(j − 1) =

[1 + exp{−(α̂j − x′β̂)}]−1 − [1 + exp{−(α̂j−1 − x′β̂)}]−1 for j = 1, · · · , J − 1, and equal to

1− F̂x(j) for j = J .

3. Then fit a proportional odds model to the new set of data, and obtain the estimated

probability p̂∗1i = P̂ (Y ∗
i = y∗i |x).

4. Fit model (2.2) to the new set of data, and obtain the estimated probability p̂∗2i =

P̂ (Y ∗
i = y∗i |x).

5. Plot p̂∗2i against p̂∗1i, i = 1, · · · , n.

Whether or not the raw data set {(yi,xi); i = 1, · · · , n} satisfies the proportional odds

assumption, the points (p̂∗1i, p̂
∗
2i) in the plot are expected to be near the line of slope 1 since

the new set of data {(y∗i ,xi); i = 1, · · · , n} satisfies the assumption. But its specific shape

depends on the data set as shown in (b) and (d) in Figure 1 and 2.

We expect δ = 0.05 in (2.6) to give practically equal slopes. The linearity in the plot

(a) in Figure 1 tells that the proportional odds model provides a decent fit for the data set

generated from the model with δ = 0.05 and J = 3. It is confirmed by practically the same

reference plot in (b). But, the null assumption of the proportional odds is rejected with the

p-value less than .0001 because of the large sample size (n = 8, 000). Without these plots it

would be hard to tell the practical significance from the statistical significance. On the other
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hand, the plots (c) and (d) in Figure 1 shows the case when the slopes are different enough

with δ = 0.5. The striking difference between the two plots tells us that we cannot assume

the null hypothesis in either a practical sense or a statistical sense. Figure 2 shows similar

results for the case of J = 5. In the next section we present a real data example which has

motivated this study.

<< Figures 1 and 2 around here>>

4. A Real Example

A nationally representative sample of 8,777 high school seniors in the United States was

drawn and questionnaires were administered. Among many variables observed, we are con-

cerned on the effect of four explanatory variables (index of unstructured socializing with

peers (denoted by x1), sex (x2), self-reported average high school grade (x3) and parent’s

education (x4)) on the marijuana use in the past 12 months (y). For a detailed description

of the more comprehensive study on the relationship between deviant behavior (marijuana

use is one measure of it) and the way people spend their time, see Osgood et al. (1996).

The index of unstructured socializing with peers measures the amount of time spent

for informal socializing with friends. The other three explanatory variables reflect social

differentiation. Except for the sex variable, the index of unstructured socializing with peers

(scored 4 to 21), the average high school grade (1 to 9), and the parent’s education (1 to

6) are treated as interval variables, i.e. the actual scores of the three ordinal variables are

assumed to be equally spaced. The selection of scores of ordinal variables does not matter

much because of the characteristic of the MARS (Multivariate Adaptive Regression Splines)

method to be adopted for the analysis in the sequel, where local smoothing of each variable

is made. The response variable of marijuana use has a scale ranging from 1 (for no use)

through 10 (40 or more times in the last 30 days).

For the analysis of this data set, Du et al. (2002) used nonparametric hypotheses and

test statistics, which were developed in Akritas et al. (2000). The main reason for applying
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the nonparametric approach was that the proportional odds assumption in the logit model

is significantly violated.

Kim (2000) used the MARS method for the analysis. The MARS model invented by

Friedman (1991) is a flexible nonparametric regression model for high dimensional data with

a continuous response Y ∗. For the presumed system that generated the data

Y ∗ = f(x1, · · · , xp) + ε,

MARS model gives as an approximation to f

f̂(x) = ΣM
m=1amBm(x), (4.1)

where Bm(x) takes the form of product spline basis functions. The number of basis func-

tions M and the form of basis function Bm(x) (i.e. product degree and knot locations) as

well as the parameters am are automatically determined by the data. Friedman (1993) ex-

tended the MARS methodology to the model with mixed (i.e. categorical and/or continuous)

explanatory variables.

Kim (2000) used the MARS method to find an effective set of explanatory variables,

i.e. a set of basis functions, and then applied the proportional odds model (2.1) with the

new set of explanatory variables. The justification for applying the MARS method on Y

comes from the characteristic of the proportional odds model, in which we can think of an

underlying continuous response variable Y ∗ which is a continuous version of the observed

ordinal response Y (Agresti 1990, p.323). We expect the regression model on Y would not be

much different from the model on Y ∗. (All we need is the same set of explanatory variables,

not the same coefficients.)

The 8 basis functions found by the MARS model on Y are as follows; B1(x) = (x1−16)+,

B2(x) = (x1 − 16)−, B3(x) = (x1 − 19)+, B4(x) = (x1 − 13)+, B5(x) = (x3 − 4)+, B6(x) =

I(x2 = 1)(x3 − 5)+(x4 − 1)+, B7(x) = I(x2 = 1)(x3 − 5)−(x4 − 1)+, B8(x) = I(x2 =

1)(x3 − 3)+(x4 − 1)+, where (x− a)+ = (x− a)I(x ≥ a), (x− a)− = −(x− a)I(x < a), and

I(A) is the indicator function of a set A. The equation (4.1) with these basis functions looks

complicated, but the interpretation is quite simple using the ANOVA decomposition, where

we collect together all basis functions that involve the same explanatory variables (Friedman
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1991). For example, the combined term a1B1(x) + · · · + a4B4(x) represents the nonlinear

main effect of x1, and the term a5B5(x)+ · · ·+a8B8(x) reveals the three-variable interaction

of x2, x3 and x4. Kim (2000) presents figures to ease the interpretation. It is interesting

that only for male students is there an interaction effect between the school performance

and parent’s education. More specifically, the male students with low school performance

tend to use more marijuana if their parents are more highly educated.

The SAS procedure PROC LOGISTIC for the proportional odds model

logit[P (Y ≤ j|x)] = αj − β1B1(x)− · · · − β8B8(x), j = 1, . . . , J − 1 (4.2)

produces the coefficients and the corresponding p-values in Table 2. We retain B4(x) =

(x1− 13)+ term in spite of its nonsignificance since it does not complicate the interpretation

and it is an important term for the MARS model on Y .

<< Table 2 around here>>

The violation of the proportional odds assumption of model (4.2) is still highly significant

with the p-value less than .0001. Let us examine the practical significance of the test using

the graphical methods proposed in the previous section.

To see how much the assumption is violated, we fit nine binary logistic regression models

for Ỹj = I(Y ≤ j), j = 1, · · · , 9, i.e.

logit[P (Ỹj = 1|x)] = logit[P (Y ≤ j|x)] = αj − β1jB1(x)− · · · − β8jB8(x). (4.3)

The proportional odds model assumes H0 : βi1 = βi2 = · · · = βi9(= βi), (i = 1, · · · , 8) for

our data set. Table 3 gives the estimates of coefficients for model (4.3). Note that there

is no reverse sign of coefficients in each column. (There is one exception in β̂4j, which is

acceptable since β4 is insignificantly different from 0 for model (4.2).)

<< Table 3 around here>>

To assess the amount of violation of the proportional odds assumption, we first draw

the confidence intervals for βi1, βi2, · · · , βi9 (i = 1, . . . , 8) as in Figure 3. The last three
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plots show some evidence of violation, which are related to the interaction term between the

school performance and the parent’s education for male students. The discrepancy between

the confidence intervals for βi1, βi2, · · · , βi9, however, depends on the sample size n as well as

the scale of the predictors. So the plots in Figure 3 are not very useful to assess the practical

significance of the null assumption. For example, the confidence interval plot does not tell

whether we can allow for a practical purpose the difference in β̂6j such as β̂61 = −0.058 and

β̂69 = −0.149.

As in Figure 4(a) the plot of two estimates of probability P (Yi = yi|x) under the model

(4.2) and (4.3) is more helpful to judge the practical significance of the null assumption.

Compared with the reference plot in Figure 4(b), the plot in Figure 4(a) indicates that there

is a practically significant violation of the proportional odds assumption. Most points of

discrepancy between these two plots were identified as with the cases y = 10 as shown by

Figure 4(c). We can conclude that except for the cases with y = 10 the proportional odds

assumption can be assumed for the practical purpose. (We have 244 cases of y = 10 out

of 8,777.) The estimates of βi9 (i = 1, . . . , 8) for model (4.3) are quite different from the

corresponding estimate of βi for model (4.2), so that the two estimates of P (Yi = 10|x) =

1−P (Yi ≤ 9|x) show a large discrepancy. But it should be mentioned that as in Table 3 the

signs of coefficients are equal so that the qualitative interpretations such as the interaction

effect between the school performance and the parent’s education for male students are the

same for two models (4.2) and (4.3).

<< Figures 3 and 4 around here >>

5. Summary and Conclusion

In common with other null hypothesis significance tests, the test of the proportional odds

assumption has a limitation. The rejection of the null hypothesis of the proportional odds

model is not very informative, especially for a large sample study. The simulation study

in Kim (2001) and a real data example in this paper have demonstrated that we should

9



not depend solely on the significance test since a statistical significance does not necessarily

mean a practical significance.

In spite of the subjectiveness of the judgment, the graphical methods proposed in this

study can be a useful supplement assessing the practical significance.
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Table 1: p-values of the test for proportional odds assumption

(a) δ = .05 or maximum 5% deviation from the common slope
no. of covariates, p

sample 2 5 8
size n no. of categories of the response, J

3 5 10 3 5 10 3 5 10
500 .413 .489 .396 .399 .448 .265 .357 .448 .288

( .11)* ( .05) ( .14) ( .11) ( .08) ( .21) ( .10) ( .12) ( .20)
2000 .255 .367 .446 .231 .333 .442 .198 .333 .390

( .31) ( .16) ( .10) ( .33) ( .13) ( .11) ( .37) ( .20) ( .16)
8000 .042 .202 .303 .030 .117 .215 .008 .104 .211

( .75) ( .36) ( .23) ( .90) ( .51) ( .27) ( .95) ( .59) ( .32)
20000 .001 .039 .158 .000 .010 .105 .000 .001 .053

( .99) ( .76) ( .39) (1.00) ( .96) ( .59) (1.00) (1.00) ( .80)
* the estimated probability of rejecting the null hypothesis under α=.05 in 100 simulations

(b) δ = .1 or maximum 10% deviation from the common slope
no. of covariates, p

sample 2 5 8
size n no. of categories of the response, J

3 5 10 3 5 10 3 5 10
500 .301 .419 .380 .306 .397 .312 .192 .321 .281

( .26) ( .11) ( .14) ( .21) ( .17) ( .19) ( .36) ( .21) ( .25)
2000 .061 .212 .333 .033 .201 .287 .018 .104 .236

( .84) ( .37) ( .14) ( .85) ( .36) ( .21) ( .92) ( .59) ( .32)
8000 .000 .010 .101 .000 .005 .037 .000 .001 .019

(1.00) ( .93) ( .57) (1.00) ( .96) ( .85) (1.00) ( .99) ( .93)
20000 .000 .000 .002 .000 .000 .000 .000 .000 .000

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)



Table 2: Estimates of Coefficients for Model (4.2)

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

coeff. .260 -.219 .444 .052 -.139 -.077 .054 .054
std. err. .060 .027 .107 .044 .018 .017 .010 .009
p-value .0001 .0001 .0001 .2419 .0001 .0001 .0001 .0001

Table 3: Estimates of Coefficients for Model (4.3)

j β̂1j β̂2j β̂3j β̂4j β̂5j β̂6j β̂7j β̂8j

1 .182 -.216 .222 .064 -.142 -.058 .036 .040
2 .297 -.267 .252 -.003 -.122 -.073 .051 .046
3 .269 -.267 .307 .037 -.164 -.068 .040 .053
4 .236 -.230 .320 .079 -.149 -.090 .060 .067
5 .306 -.225 .225 .077 -.146 -.097 .085 .081
6 .284 -.218 .219 .105 -.145 -.140 .110 .113
7 .336 -.232 .172 .121 -.145 -.144 .095 .110
8 .346 -.167 .126 .149 -.222 -.120 .092 .097
9 .326 -.030 .174 .258 -.258 -.149 .111 .129


