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Abstract
A case study of modeling ordinal categorical response data with the MARS method
is done. The study is to analyze the effect of some personal characteristics and
socioeconomic status on the teenage marijuana use. The MARS method gave a new
insight into the data set.
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1. Introduction

This case study is on the analysis of a data set which has an ordinal categorical response
variable and mixed (categorical and continuous) explanatory variables. This study was motivated
by Du et al. (1998), which analyzes the effect of personal characteristics (gender, school
performance) and a socioeconomic status (parent's education) on teenage marijuana use while
accounting for unstructured socializing activities.

Logistic regression model with proportional odds assumption, called proportional odds model, is
widely used for ordinal categorical response data. Du et al. (1998) adopted a completely
nonparametric approach mainly because the proportional odds assumption of logistic regression
model is violated.

On the other hand, Friedman (1991, 1993) advocated the MARS (Multivariate A daptive Regression
Splines) method for a flexible regression modeling of high dimensional data. The MARS method is
best suitable for continuous response data even though Friedman (1991) gives one real example of
binary logistic regression.

In this study we apply the MARS method to ordinal categorical response data to find a flexible
and effective set of functions of explanatory variables, called a set of basis functions. For inferential
purpose we fit the logistic regression model with the set of basis functions found by the MARS
method. In return we get a new insight into the data set.

In Section 2, we describe the data and introduce briefly the nonparametric approach and the
MARS method. Data analysis is done in Section 3 with some appropriateness checking of the final
model. Then concluding remarks are given in Section 4.

1) This work was supported by Soongsil University Research Fund, 2000.

2) Associate Professor, Department of Statistics, Soongsil University, Dongjak- Ku Sangdo- Dong, Seoul
156- 743, KOREA.
E-mail: jhkim @stat .soongsil .ac kr



2. Data Description and Possible Methods

Data Description A nationally representative sample of 8,777 high school seniors in the United
States was drawn and questionnaires were administered. Among many variables observed, we are
concerned on the effect of four explanatory variables (index of unstructured socializing with peers,
sex, self-reported average high school grade and parent's education) on the marijuana use in the
past 12 months. For a detailed description of the more comprehensive study on the relationship
between deviant behavior (marijuana use is one measure of it) and the way people spend their time,
see Osgood et al. (1996).

The index of unstructured socializing with peers scored 4 to 21 is a sum of four items. T hree
items (Ride around in a car just for fun, Get together with friends informally, Go to parties or other
social affairs) are on a scale of 1 (Never) to 5 (Almost everyday). And one item (During a typical
week, on how many evenings do you go out for fun and recreation?) is on a scale of 1 (Less than
one) to 6 (Six or seven). The other three explanatory variables reflect social differentiation. Sex
was coded as 1 for males and 2 for females. Respondents' self-reported average high school grades
as the indicator of respondents' future socioeconomic prospects were coded 1 for D through 9 for A.
Parent's education as the indicator of socioeconomic status for the family is taken as the highest of
both parents if both reported and is on a scale of 1 (grade school or less) to 6 (graduate or
professional school). The response variable marijuana use has a scale ranging from 1 (for no use in
the past 12 months) through 10 (40 or more times in the last 30 days).

Table 1 gives some descriptive statistics.

Tablel: Descriptive statistics for variables

Min. Max. M ean Std. Dev. Median M ode
y(marijuana use) 1 10 257 249 1 1
x1(socializing) 4 21 14.66 3.04 15 15
X2(Sex) 1 2 151 0.50 2 2
xs(grades) 1 573 193 6
Xa(parent's education) 1 4.10 131 4

Analysis Based on Nonparametric Model The most popular model for ordinal categorical
response data is the proportional odds model

logit [F , (j)]=¢- B'x,j=1,..,3- 1,

where F (j) = P(Y<]j|x). It assumes the proportional odds, or equal slope parameter A for all

j. For our data set, however, the proportional odds assumption is violated with or without the
interaction terms. (Specifically the SAS procedure LOGISTIC gives p-value 0.0001. For the score
test of the proportional odds assumption in SAS, see Stokes et al., 1996, p.221.)

For the analysis of the marijuana use data, Du et al. (1998) proposed nonparametric hypotheses
and test statistics, which were developed in Akritas et al. (2000). To briefly introduce their model,



assume we have only one nominal categorical factor V (e.g. sex) and a continuous covariate W
(e.g. index of unstructured socializing with peers). The nonparametric model decomposes the
conditional distribution function F (j) = P(Y<j|V= i, W= Xx) as

Fix())= M)+ Ai(G) + Dx() + Ci(i)-
(In  fact, they use a slightly modified definition of the distribution function
F ()= —;P(Yéj V=i, W= x) + —;P(Y<j IV=i, W= x) to handle ties) The function A,

can be regarded as the effect of factor level i averaged over the continuous covariate. For more
precise definition of the functions M,A; D, and C,, see Akritas et al. (2000). They consider the
nonparametric hypotheses

Ho(A): A(j)=0 for all i and all j

for no factor V effect after ad usting for the covariate effect and provide the corresponding test
statistic. This model can be extended to multi-factor with a continuous covariate case (Akritas et
al. 2000).

The nonparametric model focused on hypotheses testing has its advantage. Unlike the logistic
regression model with the proportional odds assumption, the nonparametric model does not depend
on the proportional odds assumption and is not affected by any monotone transformation of the
ordered covariate. In addition to the hypotheses testing on main effects and interaction effects of
factors, Du et al. (1998) also gives tests against patterned alternatives for main effects and some
descriptive plots. It is desirable to have procedures testing for the covariate effect related to D,(j)

and the interaction effect between factor and covariate, related to C  (j). Such test procedures are

not yet available.

With all the credibility of the nonparametric approach, the semiparametric approach like logistic
regression still has its own merits if the underlying assumption holds. In this paper, we try to fit
the logistic regression model with the help of the MARS method in finding an effective set of
explanatory variables.

MARS Method The MARS model invented by Friedman (1991) is a flexible nonparametric
regression model for high dimensiona data. For the presumed system that generated the data

y=f(xg, %) + e,
MARS model gives as an approximation to f
f(x)= Zh.@nBn( X), (2.1)
where B, ( x) takes the form of product spline basis functions. The number of basis functions M
and the form of basis function B ,( x) (i.e. product degree and knot locations) as well as the

parameters a, are automatically determined by the data. The basic underlying assumption of



MARS is that the function f is locally smooth. Friedman (1993) extended the MARS methodology
to the model having nominal categorical explanatory variables to which the usual definition of
smoothness does not apply. For the case of a simple categorical variable x such that
xe{c,, -, cc}, the function estimate (2.1) can be written as

f(x)= X" _,a.l(x€A ), M<K

where | is the indicator function and A ,,---,A,, are subsets of {c;,-*-, cx }. The estimate with

smaller M is said to be smoother. Friedman (1993) developed the MARS algorithm which
accommodates mixed (i.e. categorical and continuous) explanatory variables.

3. Data Analysis
MARS Model for Teenage Marijuana Use Data The MARS modeling being best suited for a
continuous response, it can also be applied to ordinal categorical response since the squared distance
[y- f(x)]° is still meaningful. The MARS model is fitted to our data set using the publicly
available FORTRAN progran MARS 3.6. Sex, variable Xx,, is treated as nominal categorical and
other explanatory variables are taken as ordinal variables.
MARS use the modified form of the generalized cross-validation criterion
cev= L3 ly,- F(x )L L
as a model selection criterion. C is a complexity cost function of the model generating f. The
complexity cost function is a function of smoothing parameter d among others. Larger values of d
will lead to smoother function estimates. We use sample reuse technique to automatically estimate
the smoothing parameter d from the data. Such option can be activated in MARS 3.6 by simply
calling subroutine xvalid. We have used 10-fold cross-validation for the estimation of optimal d.
A piecewise-linear approximation is employed, and the fully unconstrained MARS model allowing
maximum order of interactions is used. The maximum number of basis functions, M . is set to 40.

The MARS algorithm has selected the model with 9 basis functions. The estimated optimal d is

10.81, and the value of GCV is 5.115. The ANOVA decomposition on these 9 basis functions is
given on Table 2 for easy interpretation.

Table 2: ANOVA decomposition on 9 basis functions

set of functions std. dev. -gev no. of basis functions variable(s)
1 1.0150 5787 4 (Bi, Bz, Bs, Ba) 1
2 0.1846 5125 1 (Bs) 3
3 0.2364 5125 3 (Bs, B, Bs) 2 3 4
4 0.1456 5.119 1 (Bs) 1 2 4

The 9 basis functions are; B,( x)= (x;- 16),, B,( x)= (x;- 16)., Bjs( x)= (x;- 19),,



Ba(X)= (X1- 13)., Bs(x)= (Xz- 4)., Bs(x)=1(Xx2= 1)(X3- 5)s (Xa- )4, By(x)=
1(x2= 1)(X3= 5). (Xa- D)., Bg(X)= 1(x,= (Xs- 3). (Xg- 1., Bo(X) = 1(X,= 2)(xs- 16),
(X4- 1),, where (x- a), = (x- a)l(x=a) and (x- a). =- (x- a)l(x<a).

The exact equation of the selected model is

f(x) = 2.171+ .405B,( x) - .0881B,( Xx) + .626B 4( Xx) + .181B ,( X)
- .113B4( X)- .0926B4( X) + .0847B,( X) + .0613B4( X) - .0609B o( X)

3.1

From the selected model, we determine to omit one basis function representing the three-factor
interaction term Bg( X) = 1 (X, = 2)(Xx;- 16), (x,- 1), , because first, the model without it incurs

little increase in GCV value (from 5.115 to 5.119 as in the third column of Table 2), and secondly
this term is not retained consistently in the final models with other options of MARS algorithm (e.g.

if we allow the maximum order of interaction to be three rather than four, Bg( x) is still selected
but Bg( x) is not).
Without B4( x) term, we get by the least squares method,

f(x) = 2.127+ .332B( x) - .0864B,( X) + .662B4( X) + .179B ,( X)
- 111B4( x)- .110B4( x) + .0982B( x) + .0752B4( X).

32)

Figure 1 depicts the model (3.2). (There is little difference in plots between the models (3.1) and
(3.2)) The equation looks complicated but the interpretation is quite simple using ANOVA

decomposition as in Table 2 and Figure 1. The variable x,, the index of unstructured socializing
with peers, is the dominating predictor since without it the GCV increases most and its impact on
f is the largest (see Table 2 and Figure 1(a)). The school performance and the socializing index
have shown nonlinear effect as in Figure 1 (a) and (b). Figure 1(c) depicting Bg( x) to Bg( x)

tells that male students with poor grades and highly educated parents tend to use more marijuana.
It is interesting that only for male students there is an interaction effect between the school
performance and the parent's education. Figure 1(d) combining Figure 1(b) and 1(c) should be used

for the interpretation of the effect of x; for male students since an effect of a factor should be
interpreted with other factors together if it is related with them. For female students, Figure 1(b)
explains the effect of xj.

Even though model (3.2) with Table 2 and Figure 1 gives a lot of insight, it lacks inferential
measures. Thus we fit the proportional odds model with explanatory variables in (3.2). The
justification for this comes from the property of the proportional odds model. If

logit [P(Y<j[x)]=¢- B'x, j=1,..,3- 1,
and

Y= B x+te



where ¢ has logistic distribution which looks much like normal distribution, then it is known that

Y" is an underlying continuous response variable in the sense that
Y=j if @ <Y <q 33)
where - co= g,<a,<---<a@;= 0. So, the model for Y s expected to be equaly valid for

logit [P( Y<j)]. However, model (3.2) is on the response Y, not on the unobservable Y . We

expect the regression model on Y would not be much different from the model on Y . (All we

need is the same set of predictors, not the same coefficients.)
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Figure 1. ANOVA functions for the MARS madel (3.2)

The SAS procedure PROC LOGISTIC for the logit model
logit [P(Y<] [X)]= aj- BiBi(X)- == BgBg(x), j=1,...,J- 1 (3.4)
produces the coefficients and the corresponding p-values in T able 3.

We also fitted the model with Bg4( x) term, in which B,= .028 (std.err. = 010, p-value = .0066)
with minor changes in other coefficients. Although it is statistically significant, we prefer the model
(34) without Bg4( x) term because; 1) its p-value is relatively large compared with other terms; 2)
a statistical significance does not necessarily mean a practical significance in large sample (Agresti,

1996, p.161); 3) the inclusion of Bg4( x) term unnecessarily complicates the interpretation. On the



other hand we retain B,( x) = (x;- 13), term since it does not complicate the interpretation and

it is an important term for the model (3.2) on Y.

T able 3: Estimates of Coefficients for M odel

B B B B Bs B B B

Ccoeff. 260 -.219 444 052 -139 -077 054 054
std. err. 060 027 107 044 018 017 010 009
p-value 0001 0001 0001 2419 0001 0001 0001 .0001

Appropriateness of the Proportional Odds M odel The proportional odds assumption of the logit
model (34) is still violated. The score test of SAS procedure PROC LOGISTIC for the assumption

gives the p-value .0001 (chi-squared value 2308 with (10- 2) x 8 = 64 degree of freedom). T o see
how much the assumption is violated, we fit nine binary logistic regression models for

Y=1(Y<)), j= 1,9, ie
logit [P( Y;= 1]x)]= logit [P(Y<j[X)]= a- B4Bi(X)- - BgBgs(x). (3.5)

The proportional odds model assumes Hy: 8i1= 8= - = Bi(= Bi), (i=1,---,8) for our data

set. Table 4 helps us to see how different the coefficients are for different categories of Y.

Table 4: Estimates of Coefficients for Model (3.5)

J ?5’14 %21' %31' %41' %51' ;5’61- z)n' %SJ
1 182 216 222 064 J142 - 058 .036 .040
2 297 267 252 -.003 122 - 073 051 046
3 269 267 307 037 164 -.068 .040 053
4 236 230 320 079 149 -.090 .060 067
5 306 225 225 077 146 - .097 .085 081
6 284 218 219 105 .145 -.140 110 113
7 336 232 72 A21 .145 -.144 .095 110
8 346 167 126 149 222 -.120 092 097
9 326 .030 174 258 .258 -.149 J11 129

There is no reverse sign of coefficients in each column except one case of ;BM-. (Note that @4
is insignificantly different from 0 in Table 3.) And most of them are within the boundaries of a half
the value of the common coefficient of model (3.4) in Table 4. (All of the exceptions occur in

Y, j=6, especially in Y. Note that only 2.8%, i.e. 244 out of 8,777, have the value Y equa to
10, and less than 15% have the value Y greater than 5.) A large sample as our data set gives
small standard deviations of coefficients, so that the score test results are highly significant. But we
do not require B,= B,= -
allow as much differences as in Table 4. It is noteworthy that the score test for a naive model

-= B(=4;) foral i=1,---,8 in a strict sense. Practically we might



logit [P(Y<] |X)] = a;- BiX:i- BoXb- BaXs- BaXa- BsXiXs
- BeXaXa- BrXaXa- BeXiXaXy,
where x,= I(x,= 1), gives chi-squared value 2455 with 64 degrees of freedom. Thus MARS

helped to reduce the level of violation of the proportional odds assumption.
Another measure for the appropriateness of the model (3.4) is a prediction error. To estimate a
prediction error, we calculate

y = BiBi(X)+ -+ BgBg(X).

*

And we predict )7:j if ?zj_ 1<y < ?zj' j=1,---,10, where ?10: - 00, ?11'...' /C\l'g are obtained
from PROC LOGISTIC and ?110: oo, Out of 8,777 observations, model (3.4) gives 4464 (50.9%)

predictions Qmatching with y.If we allow error of prediction as much as |y - )7|£ 1, the accuracy
of prediction increases to 6,036/8,777(=68.8%). In order to see how good or bad this is, we fit a
saturated model. Treating all explanatory variables as nomina categorical variables, we have
18x2x9x6= 1,944 categories. Among them we have 1,253 nonempty categories excluding empty
cells. (310 cells out of 1,253 have only one observation.) If we are free to choose a prediction )7 in
each of 1,253 cells, we would take as our prediction the mode, i.e. the most frequently observed
value of y in each cell to maximize the number of correct matches. We call it prediction from a
saturated model. The numbers of observations predicted correctly or with some error by a saturated
model have been counted by a FORT RAN program and are shown in T able 5. The saturated model

gave 888( = 5,352- 4,464) more correct predictions than model (3.4). But we got this gain at the
cost of 1,236( = 1,253 - 17) more parameters. T his fact confirms how effectively the model (3.4)
describes the data.

Table 5: Number of Matched Observations for Various Models

no. of abs. Saturated Model (3.4) Model (3.4) Naive
such that M odel with Bs(X) M odel
y=y 5352 4464 4442 4186
- yl<1 6753 6036 6036 5968
- v|<2 7524 6826 6824 6837

Table 5 suggests that we cannot do much with the given data set. To see how much we can
explain y with the given explanatory variables x;,X,,Xs,X,, we calculated R?= [ corr (y,y)]>.
To maximize R? in the saturated model, it is better to take the mean of observations in each cell
instead of the mode. R?= 0.307 for the saturated model and R?= 0.189 for the MARS regression

model (3.2). It should be mentioned again that the gain of R? of the saturated model was at the
cost of 1,236 more parameters. Furthermore, for future data set independent of the given data set,
the saturated model perform poorly while the parsimonious models like (3.2) or (3.4) would not be



affected much. Small R? of the saturated model indicates that we need other explanatory variables
such as self control to explain the variation of y more satisfactorily.

Interpretation of the Logit M odel If we can practically assume the proportional odds assumption,
we can interpret model (3.4) with the odds of response below any given category or the cumulative
probabilities. For instance, females (x,= 2) with poor school performance (Xx;= 1) and moderate
socializing (x;= 14) has the probability that they did not use marijuana at al in the past 12
months as

EXp(al' %ZXZ- %4X1) -
1+ exp ((@- Bpx2- Byx1 T

irrespective of their parents' education level. On the other hand, for male students (x,= 1) with the

P(Y=1|x;= 14,X,= 2,X3= 1) =

same school performance and socializing index, the estimated probability is .62 when the parents’
education level is low (x,= 1), while the probability goes down to .35 when the parents' education

level is high (x,= 6). And the odds ratio

P(Y<j|x= (14,1,1, D))/P(Y3 |x= (14,1,1,1)
P(Y<j|x= (14,1,1,6))/P(Y>} |x= (14,1,1,6))

. . B, %20
is estimated as e A

= 3.0 for any response category j= 1,---,9, which tells that the parent's
education is a considerably significant factor on the marijuana use for male students with poor
school performance.

In order to see that the two main effects and one three-factor interaction effect in model (3.4)
remain valid without the proportional odds assumption, we did a series of significance tests on

those 3 effects in model (35). (There are 9x3= 27 null hypotheses to be tested, such that
Hoy:81= B2= B3= B:=0, HoyiBs=0, Hog:fs= B87= =0, j=1,..,9) They are all
highly significant. (With two exceptions, .004 and .009 on the effect of x;, al p-values are less than

.0001. Since the p-values are so small, type | error due to multiple tests does not cause problem.)
So, our findings on the two main effects and one interaction effect are valid at least in a qualitative
sense. Du et al. (1998) also found that marijuana use tends to increase with parent's education. We
can conclude more specifically in this analysis that the effect of parent's education tends to be
larger for male students with lower school performance.

4. Conclusion
The MARS modeling on the teenage marijuana use data has revealed that the male students with
low school performance tend to use more marijuana when their parents get more highly educated.
It has also found some nonlinear effects of the unstructured socializing with peers and the school
performance. More quantitative interpretation can be made using either model (3.2) or model (3.4).
For inferential measures, proportional odds model was attempted with the basis functions found



by MARS as explanatory variables. Although the assumption of proportional odds failed in the
statistical significance test, some findings and arguments were made, asserting that the assumption
can be made for a practical purpose. Even without the proportional odds assumption, the qualitative
findings by MARS on the effects of unstructured socializing, school performance and the interaction
between school performance and parent's education for male students remain valid since they are
all highly significant in model (35).

This case study suggests that the MARS method is very helpful in the exploratory step and also
in the modeling step for the regression with ordinal categorical response as well as with continuous
response.
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