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A case study of m odeling ordin al cat egorical r espon se dat a w ith the MARS m ethod
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1. Introduction
T his case study is on the analy sis of a data set which has an ordinal cat egorical respon se

v ariable and mix ed (categorical and continuou s ) explanatory v ariables. T his study w as m otiv ated

by Du et al. (1998), which analy zes the effect of per sonal characteristics (gender , school

perform ance) and a socioeconomic statu s (parent ' s education ) on teenage m arijuana u se while

accounting for un structured socializing act ivities.

Logist ic r egression m odel with proportional odds assumption , called p rop ortional odds m odel, is

w idely u sed for ordinal categorical r espon se dat a. Du et al. (1998) adopted a completely

nonparam etric approach m ainly becau se the proportional odds assumption of logistic r egression

m odel is v iolated.

On the other hand, Friedm an (1991, 1993) advocated the MARS (Multiv ariate A daptive Regression

Splines ) m ethod for a flexible r egression m odeling of high dim en sional data . T he MARS m ethod is

best suitable for cont inuous respon se data even though Friedm an (1991) giv es one real ex ample of

binary logistic regression .

In this study w e apply the MARS m ethod to ordinal categorical respon se dat a to find a flexible

and effect ive set of funct ion s of explanatory v ariables , called a set of basis function s . F or infer ent ial

purpose w e fit the logistic regression m odel with the set of basis function s found by the MARS

m ethod. In return w e get a new in sight into the data set .

In S ection 2, w e describe the data and introduce briefly the nonparam etr ic approach and the

MARS m ethod. Data analy sis is done in Section 3 with som e appropriateness checking of the final

m odel. T hen concluding rem arks are giv en in Section 4.
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2 . D at a D e s cription and Po s s ible M ethods
D ata D e s cription A nationally representativ e sample of 8,777 high school senior s in the United

States w as drawn and questionnaires w ere administered. Am ong m any v ariables ob served, w e are

concerned on the effect of four explanatory v ariables (index of un structured socializing with peer s ,

sex , self- r eported av erage high school grade and parent ' s education ) on the m arijuana use in the

past 12 m onth s . F or a det ailed descript ion of the m ore comprehen siv e study on the relation ship

betw een deviant behavior (m arijuana u se is one m easure of it ) and the w ay people spend their t im e,

see Osgood et al. (1996).

T he index of un structured socializing with peer s scored 4 to 21 is a sum of four item s . T hree

item s (Ride around in a car ju st for fun , Get t ogether with fr iends inform ally , Go to part ies or other

social affair s ) are on a scale of 1 (Never ) to 5 (Alm ost everyday ). And one item (During a typical

w eek , on how m any ev ening s do y ou go out for fun and recreation ?) is on a scale of 1 (Less than

one) t o 6 (Six or sev en ). T he other three explanatory v ariables r eflect social differentiation . S ex

w as coded as 1 for m ales and 2 for fem ales . Respondent s ' self- reported average high school grades

as the indicator of r espondent s ' future socioeconomic prospect s w ere coded 1 for D through 9 for A .

P arent ' s education as the indicator of socioeconomic status for the family is t aken as the highest of

both parent s if both reported and is on a scale of 1 (grade school or less ) to 6 (graduate or

professional school). T he respon se v ariable m arijuana u se has a scale ranging from 1 (for no u se in

the past 12 m onth s ) through 10 (40 or m ore tim es in the last 30 day s ).

T able 1 giv es som e descriptiv e statistics .

T able1: Descriptiv e statistics for v ariables

Min . Max . Mean Std. Dev . Median Mode
y (m arijuana u se)

x 1 (socializing )

x 2 (sex )

x 3 (grades )

x 4 (parent ' s education )

1

4

1

1

1
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21

2

9

6

2.57

14.66

1.51

5.73

4.10

2.49

3.04

0.50

1.93

1.31

1

15

2

6

4

1

15

2

6
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A n aly s i s B a s ed on N onparam etric M ode l T he m ost popular m odel for ordinal categorical

r espon se data is the proportional odds m odel

log it [ F x ( j ) ] = j - ' x , j = 1, , J - 1 ,

w here F x ( j ) = P ( Y j | x ) . It as sum es the proportional odds , or equal slope param eter for all

j . F or our data set , how ev er , the proport ional odds assumption is violated with or without the

inter action term s . (Specifically the SAS procedure LOGIST IC giv es p- value 0.0001. F or the score

t est of the proportional odds assumption in SA S , see Stokes et al., 1996, p .221.)

F or the analy sis of the m arijuana u se data , Du et al. (1998) proposed nonparam etr ic hypotheses

and t est statistics , which w ere developed in Akritas et al. (2000). T o briefly introduce their m odel,



assum e w e hav e only one nominal cat egorical factor V (e.g . sex ) and a continuou s cov ariate W

(e.g . index of un structured socializing with peer s ). T he nonparam etric m odel decomposes the

condit ional distribution function F ix ( j ) = P ( Y j | V = i , W= x ) as

F ix ( j ) = M ( j ) + A i ( j ) + D x ( j ) + C ix ( j ) .

(In fact , they u se a slightly m odified definition of the dist ribution function

F ix ( j ) =
1
2

P ( Y j | V = i , W= x ) +
1
2

P ( Y <j | V = i , W= x ) t o handle ties .) T he function A i

can be regarded as the effect of factor level i av eraged over the cont inuous covariat e. F or m ore

precise definition of the function s M , A i , D x and C ix , see Akritas et al. (2000). T hey con sider the

nonparam etric hypotheses

H 0 ( A ) : A i( j ) = 0 for all i and all j

for no factor V effect after adj us ting for the cov ariate effect and provide the corresponding test

statistic. T his m odel can be extended to multi- factor w ith a continuou s cov ariate case (Akritas et

al. 2000).

T he nonparam etr ic m odel focu sed on hypotheses testing has it s adv antage. Unlike the logistic

r egression m odel with the proportional odds assumption , the nonparam etr ic m odel does not depend

on the proportional odds assumption and is not affected by any m onotone tran sform ation of the

ordered cov ariate. In addit ion to the hypotheses testing on m ain effect s and int er action effect s of

factor s , Du et al. (1998) also giv es test s again st pat terned alternativ es for m ain effect s and som e

descriptiv e plot s . It is desir able to hav e procedures testing for the cov ariate effect related to D x ( j )

and the interact ion effect betw een factor and cov ariate, r elat ed to C ix ( j ) . Such t est procedures are

not y et av ailable.

With all the credibility of the nonparam etr ic approach , the semiparam etr ic approach like logist ic

r egression still has it s own m erit s if the underly ing assumption holds . In this paper , w e try to fit

the logistic regression m odel with the help of the MARS m ethod in finding an effectiv e set of

explanatory v ariables .

M A R S M eth od T he MARS m odel inv ent ed by Friedm an (1991) is a flexible nonparam etr ic

r egression m odel for high dim en sional data . F or the presum ed sy stem that generated the data

y = f (x 1 , , x p) + ,

MARS m odel gives as an approxim ation to f

f ( x ) = M
m = 1a m B m ( x ) , (2.1)

w here B m ( x ) takes the form of product spline basis funct ion s . T he number of basis function s M

and the form of basis function B m ( x ) (i.e. product degree and knot location s ) as w ell as the

param eter s a m are autom atically determined by the data. T he basic underlying assumption of



MARS is that the funct ion f is locally sm ooth . F riedm an (1993) extended the MARS m ethodology

t o the m odel having nominal cat egorical explanatory v ariables to w hich the u sual definition of

sm oothness does not apply . F or the case of a simple categorical variable x such that

x {c 1 , , cK }, the function estim ate (2.1) can be written as

f (x ) = M
m = 1 a m I (x A m ) , M K

w here I is the indicator function and A 1 , , A M are sub set s of {c 1 , , c K }. T he estim ate with

sm aller M is said to be sm oother . F riedm an (1993) dev eloped the MARS algorithm which

accomm odates mix ed (i.e. categorical and cont inuous ) explanatory v ariables .

3 . D at a A n aly s is
M A R S M odel for T e en ag e M ariju an a U s e D ata T he MARS m odeling being best suited for a

continuou s respon se, it can also be applied t o ordinal categorical respon se since the squared distance

[ y - f ( x ) ] 2 is still m eaningful. T he MARS m odel is fitt ed to our data set u sing the publicly

av ailable F ORT RAN program MARS 3.6. S ex , v ariable x 2 , is t reat ed as nominal categorical and

other explanatory v ariables are taken as ordinal v ariables.

MARS u se the m odified form of the generalized cross - validation criterion

GC V =
1
n

n
i = 1[ y i - f ( x i) ] 2 / [ 1 -

C
n

] 2

as a m odel selection criterion . C is a complexity cost function of the m odel generating f . T he

complexity cost function is a function of sm oothing param et er d am ong other s . Larger v alues of d

w ill lead to sm oother funct ion est im at es . W e u se sample reu se technique to autom atically estim ate

the sm oothing param eter d from the dat a. Such option can be activ ated in MARS 3.6 by simply

calling subroutine xval i d. W e have u sed 10- fold cross - validation for the estim ation of optim al d .

A piecewise- linear approximation is employed, and the fully unconstrained MARS model allowing

maximum order of interactions is u sed. T he maximum number of basis functions, M m ax is set to 40.

T he MARS algorithm has selected the m odel with 9 basis function s . T he estim ated optim al d is

10.81, and the value of GC V is 5.115. T he ANOVA decomposition on these 9 basis function s is

given on T able 2 for easy int erpretat ion .

T able 2: ANOVA decomposition on 9 basis function s

set of function s st d. dev . - gcv no. of basis function s variable (s )

1 1.0150 5.787 4 (B 1 , B2 , B 3 , B4 ) 1
2 0.1846 5.125 1 (B5 ) 3
3 0.2364 5.125 3 (B6 , B7 , B8 ) 2 3 4
4 0.1456 5.119 1 (B9 ) 1 2 4

T he 9 basis funct ion s are; B 1( x ) = (x 1 - 16) + , B 2 ( x ) = (x 1 - 16) - , B 3 ( x ) = ( x 1 - 19) + ,



B 4 ( x ) = (x 1 - 13) + , B 5 ( x ) = (x 3 - 4) + , B 6 ( x ) = I (x 2 = 1) (x 3 - 5) + (x 4 - 1) + , B 7 ( x ) =

I (x 2 = 1) (x 3 - 5) - (x 4 - 1) + , B 8 ( x ) = I (x 2 = 1)( x 3 - 3) + (x 4 - 1) + , B 9 ( x ) = I (x 2 = 2)( x 1 - 16) +

(x 4 - 1) + , where (x - a) + = ( x - a) I (x a) and (x - a) - = - (x - a)I ( x < a) .

T he ex act equat ion of the selected m odel is

f ( x ) = 2 . 171 + .405 B 1( x ) - .0881B 2 ( x ) + .626 B 3 ( x ) + . 181B 4 ( x )

- . 113 B 5 ( x ) - .0926 B 6 ( x ) + .0847 B 7 ( x ) + .0613 B 8 ( x ) - .0609 B 9 ( x )
(3.1)

F rom the selected m odel, w e det ermine to omit one basis function representing the three- fact or

inter action term B 9 ( x ) = I (x 2 = 2)( x 1 - 16) + ( x 4 - 1) + , becau se fir st , the m odel without it incur s

little increase in GC V value (from 5.115 to 5.119 as in the third column of T able 2), and secondly

this t erm is not retained con sist ently in the final m odels with other option s of MARS algorithm (e.g .

if w e allow the m aximum order of interaction to be three rather than four , B 8 ( x ) is still select ed

but B 9 ( x ) is not ).

Without B 9 ( x ) term , w e get by the least squares m ethod,

f ( x ) = 2 . 127 + .332 B 1( x ) - .0864B 2 ( x ) + .662B 3 ( x ) + . 179 B 4 ( x )

- . 111B 5 ( x ) - . 110B 6 ( x ) + .0982 B 7 ( x ) + .0752B 8 ( x ) .
(3.2)

F igure 1 depict s the m odel (3.2). (T here is litt le difference in plot s betw een the m odels (3.1) and

(3.2)) T he equation looks complicated but the interpretation is quit e simple u sing ANOVA

decomposition as in T able 2 and F igure 1. T he v ariable x 1 , the index of un structured socializing

w ith peer s , is the dominating predictor since without it the GC V increases m ost and it s impact on

f is the largest (see T able 2 and Figure 1(a )). T he school perform ance and the socializing index

hav e shown nonlinear effect as in Figure 1 (a) and (b ). F igure 1(c) depict ing B 6 ( x ) to B 8 ( x )

t ells that m ale student s with poor grades and highly educated parent s tend t o u se m ore m arijuana.

It is interesting that only for m ale student s there is an int er action effect betw een the school

perform ance and the parent ' s educat ion . Figure 1(d) combining F igure 1(b ) and 1(c) should be used

for the interpretation of the effect of x 3 for m ale student s since an effect of a factor should be

interpreted with other factor s t ogether if it is r elated with them . F or fem ale student s, F igure 1(b )

explain s the effect of x 3 .

Even though m odel (3.2) with T able 2 and F igure 1 giv es a lot of in sight , it lack s inferential

m easures. T hu s w e fit the proportional odds m odel w ith explanatory v ariables in (3.2). T he

ju stification for this com es from the property of the proportional odds m odel. If

log it [ P ( Y j | x ) ] = j - ' x , j = 1, , J - 1 ,

and

Y * = ' x +



w here has logistic dist ribution which look s much like norm al distr ibution , then it is know n that

Y * is an underlying continuou s respon se variable in the sen se that

Y = j if j - 1 < Y *
j , (3.3)

w here - = 0< 1 < < J = . So, the m odel for Y * is expected to be equally valid for

log it [ P ( Y j ) ] . How ev er , m odel (3.2) is on the respon se Y , not on the unob serv able Y * . W e

expect the regression m odel on Y w ould not be much different from the m odel on Y * . (All w e

need is the sam e set of predictor s , not the sam e coefficient s .)

T he SA S procedure PROC LOGIST IC for the logit m odel

log it [ P ( Y j | x ) ] = j - 1B 1( x ) - - 8B 8 ( x ) , j = 1, , J - 1 (3.4)

produces the coefficient s and the corresponding p- values in T able 3.

W e also fitted the m odel with B 9 ( x ) term , in which 9 = .028 (st d.err . = .010, p - v alue = .0066)

w ith minor changes in other coefficient s . Although it is statistically significant , w e prefer the m odel

(3.4) w ithout B 9 ( x ) term becau se; 1) it s p - v alue is relativ ely large compared with other term s ; 2)

a statistical significance does not necessarily m ean a practical significance in large sample (A gresti,

1996, p .161); 3) the inclu sion of B 9 ( x ) t erm unnecessarily complicates the interpretation . On the



other hand w e retain B 4 ( x ) = ( x 1 - 13) + term since it does not complicate the interpretation and

it is an important term for the m odel (3.2) on Y .

T able 3: Estim ates of Coefficient s for Model

1 2 3 4 5 6 7 8

coeff. .260 - .219 .444 .052 - .139 - .077 .054 .054
std. err . .060 .027 .107 .044 .018 .017 .010 .009
p - v alue .0001 .0001 .0001 .2419 .0001 .0001 .0001 .0001

A ppropriat en e s s of the Proport ion al Odds M odel T he proportional odds assumption of the logit

m odel (3.4) is st ill violated. T he score test of SAS procedure PROC LOGIST IC for the assumption

gives the p- value .0001 (chi- squared v alue 230.8 w ith ( 10 - 2) 8 = 64 degree of freedom ). T o see

how much the assumption is violated, w e fit nine binary logistic regression m odels for

Y j = I ( Y j ) , j = 1, , 9 , i.e.

log it [ P ( Y j = 1 | x ) ] = log it [ P ( Y j | x ) ] = j - 1jB 1( x ) - - 8jB 8 ( x ) . (3.5)

T he proport ional odds m odel assum es H 0 : i1 = i2 = = i9 ( = i ) , ( i = 1, , 8) for our data

set . T able 4 helps u s to see how differ ent the coefficient s ar e for different categories of Y .

T able 4: Estim ates of Coefficient s for Model (3.5)

j 1j 2j 3j 4j 5j 6j 7j 8j

1 .182 - .216 .222 .064 - .142 - .058 .036 .040
2 .297 - .267 .252 - .003 - .122 - .073 .051 .046
3 .269 - .267 .307 .037 - .164 - .068 .040 .053
4 .236 - .230 .320 .079 - .149 - .090 .060 .067
5 .306 - .225 .225 .077 - .146 - .097 .085 .081
6 .284 - .218 .219 .105 - .145 - .140 .110 .113
7 .336 - .232 .172 .121 - .145 - .144 .095 .110
8 .346 - .167 .126 .149 - .222 - .120 .092 .097
9 .326 - .030 .174 .258 - .258 - .149 .111 .129

T here is no rev er se sign of coefficient s in each column ex cept one case of 4j . (Note that 4

is in significant ly different from 0 in T able 3.) And m ost of them are within the boundaries of a half

the v alue of the comm on coefficient of m odel (3.4) in T able 4. (All of the ex ception s occur in

Y j , j 6 , especially in Y 9 . Note that only 2.8%, i.e. 244 out of 8,777, have the v alue Y equal to

10, and less than 15% hav e the v alue Y great er than 5.) A large sample as our dat a set gives

sm all standard deviation s of coefficient s , so that the score test result s are highly significant . But w e

do not r equire i1 = i2 = = i9 ( = i ) for all i = 1, , 8 in a str ict sen se. Pract ically w e might

allow as much differences as in T able 4. It is notew orthy that the score t est for a naiv e m odel



log it [ P ( Y j | x ) ] = j - 1x 1 - 2 x I
2 - 3 x 3 - 4x 4 - 5 x I

2x 3

- 6 x I
2x 4 - 7 x 3x 4 - 8x I

2x 3x 4 ,

w here x I
2 = I (x 2 = 1) , gives chi- squared v alue 245.5 with 64 degrees of freedom . T hu s MARS

helped t o reduce the lev el of violation of the proport ional odds assumption .

Another m easure for the appropriateness of the m odel (3.4) is a prediction error . T o estim ate a

prediction error , w e calculat e

y * = 1 B 1( x ) + + 8 B 8 ( x ) .

And w e predict y = j if j - 1 <y *
j , j = 1, , 10 , where 0 = - , 1, , 9 are obtained

from PROC LOGIST IC and 10 = . Out of 8,777 ob servation s , m odel (3.4) giv es 4,464 (50.9% )

prediction s y m atching w ith y . If w e allow error of prediction as much as |y - y | 1, the accuracy

of prediction increases to 6,036/ 8,777(=68.8% ). In order to see how good or bad this is , w e fit a

saturated m odel. T reating all explanat ory v ariables as nominal categorical v ariables, w e hav e

18 2 9 6 = 1, 944 categories . Am ong them w e hav e 1,253 nonempty categories ex cluding empty

cells . (310 cells out of 1,253 hav e only one ob serv at ion .) If w e are fr ee to choose a prediction y in

each of 1,253 cells , w e w ould take as our predict ion the m ode, i.e. the m ost fr equently ob served

v alue of y in each cell to m aximize the number of correct m atches . W e call it pr edict ion from a

saturated m odel. T he number s of ob serv at ion s predicted corr ectly or with som e error by a saturated

m odel have been counted by a F ORT RAN program and are show n in T able 5. T he saturat ed m odel

gav e 888( = 5 , 352 - 4 , 464 ) m ore corr ect prediction s than m odel (3.4). But w e got this gain at the

cost of 1,236( = 1, 253 - 17 ) m ore param eter s . T his fact confirm s how effectiv ely the m odel (3.4)

describes the data .

T able 5: Number of Mat ched Ob serv ation s for Variou s Models

no. of ob s. S aturated Model (3.4) Model (3.4) Naiv e
such that Model with B9 (x ) Model

y = y 5352 4464 4442 4186
|y - y | 1 6753 6036 6036 5968
|y - y | 2 7524 6826 6824 6837

T able 5 suggest s that w e cannot do much with the giv en data set . T o see how much w e can

explain y with the giv en explanatory v ariables x 1 , x 2 , x 3 , x 4 , w e calculated R 2 = [ corr (y , y ) ] 2 .

T o m aximize R 2 in the saturated m odel, it is better t o take the m ean of ob servation s in each cell

in st ead of the m ode. R 2 = 0 .307 for the saturated m odel and R 2 = 0 . 189 for the MARS regression

m odel (3.2). It should be m entioned again that the gain of R 2 of the saturated m odel w as at the

cost of 1,236 m ore param eter s. F urtherm ore, for future data set independent of the giv en data set ,

the saturated m odel perform poorly while the par sim oniou s m odels like (3.2) or (3.4) w ould not be



affected much . Sm all R 2 of the saturated m odel indicates that w e need other explanatory v ariables

such as self control to explain the variation of y m ore satisfactorily .

Interpre tation of th e Log it M odel If w e can practically assum e the proportional odds assumption ,

w e can interpret m odel (3.4) with the odds of respon se below any giv en category or the cumulativ e

probabilities . F or in stance, fem ales ( x 2 = 2 ) with poor school perform ance ( x 3 = 1) and m oderate

socializing ( x 1 = 14 ) has the probability that they did not u se m arijuana at all in the past 12

m onths as

P ( Y = 1 | x 1 = 14 , x 2 = 2 , x 3 = 1) =
ex p ( 1 - 2 2 - 4 1)

1 + ex p ( 1 - 2 2 - 4 1)
= .62 ,

irr espectiv e of their parent s ' education level. On the other hand, for m ale student s ( x 2 = 1) with the

sam e school perform ance and socializing index , the estim ated probability is .62 when the parent s '

educat ion lev el is low ( x 4 = 1), while the probability goes down to .35 when the parent s ' education

lev el is high ( x 4 = 6 ). And the odds ratio

P ( Y j | x = ( 14 , 1 , 1 , 1) ) / P ( Y >j | x = ( 14 , 1, 1 , 1) )
P ( Y j | x = ( 14 , 1 , 1 , 6 ) ) / P ( Y >j | x = ( 14 , 1, 1 , 6) )

is est im at ed as e 7 20
= 3 .0 for any respon se category j = 1, , 9 , which tells that the parent ' s

educat ion is a con siderably significant fact or on the m arijuana use for m ale student s with poor

school perform ance.

In order to see that the t w o m ain effect s and one three- fact or int er action effect in m odel (3.4)

r em ain v alid without the proportional odds assumption , w e did a series of significance test s on

those 3 effect s in m odel (3.5). (T here are 9 3 = 27 null hypotheses to be tested , such that

H 0 1j : 1 = 2 = 3 = 4 = 0; H 02j : 5 = 0; H 03j : 6 = 7 = 8 = 0 , j = 1, , 9 .) T hey are all

highly significant . (With tw o ex ception s, .004 and .009 on the effect of x 3 , all p- values are less than

.0001. Since the p - v alues are so sm all, type I error due to multiple test s does not cau se problem .)

S o, our finding s on the tw o m ain effect s and one int er action effect are v alid at least in a qualitativ e

sen se. Du et al. (1998) also found that m arijuana u se tends to increase with parent ' s education . W e

can conclude m ore specifically in this analy sis that the effect of parent ' s education tends to be

larger for m ale student s with low er school perform ance.

4 . Conclu s ion
T he MARS m odeling on the teenage m arijuana u se dat a has revealed that the m ale student s with

low school perform ance t end to use m ore m arijuana when their parent s get m ore highly educated .

It has also found som e nonlinear effect s of the un structured socializing with peer s and the school

perform ance. More quantitat ive interpretation can be m ade u sing either m odel (3.2) or m odel (3.4).

F or infer ential m easures , proportional odds m odel w as att empted with the basis function s found



by MARS as explanatory v ariables. Although the assumption of proportional odds failed in the

statistical significance t est , som e finding s and argum ent s w ere m ade, assert ing that the assumption

can be m ade for a practical purpose. Ev en without the proportional odds assumption , the qualit ative

finding s by MARS on the effect s of un structured socializing , school perform ance and the int er action

betw een school perform ance and parent ' s educat ion for m ale student s r em ain valid since they are

all highly significant in m odel (3.5).

T his case study suggest s that the MARS m ethod is v ery helpful in the exploratory step and also

in the m odeling step for the regression with ordinal categorical r espon se as w ell as with continuou s

respon se.
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