Á¦3Àå ÁÖ¿ä³»¿ë°ú Áú¹®
3.2 Discrete Distributions
3.3 Continuous Distributions
3.4 Exponential Families
3.5 Location and Scale Families
3.6 Inequlities and Identities
Miscellanea
the Poisson postulates
Á¦3Àå ¿¬½À¹®Á¦(¼÷Á¦)
4 5 7 11 13 17 20 22 23 24 25 26 28 32 38 39 40
Gumbel È®·üº¯¼ö YÀÇ ±â´ë°ª°ú ºÐ»êÀ» ±¸ÇÏ´Â ¹®Á¦Àε¥, Y=¥á - ¥ãlogX À̹ǷΠW=-logXÀÇ Æò±Õ°ú ºÐ»êÀ» ±¸Çؼ E(Y)=¥á + ¥ãE(W), Var(Y)=¥ã2Var(W)ÀÓÀ» ÀÌ¿ëÇÏ¸é °è»êÀÌ ´ú º¹ÀâÇØÁø´Ù. WÀÇ Æò±Õ°ú ºÐ»êÀº WÀÇ mgf¸¦ ÀÌ¿ëÇÏ¿© ±¸ÇÑ´Ù. ÀÌ ¶§ digamma function°ú polygamma functionÀÌ ÇÊ¿äÇѵ¥, digamma function Àº
¥÷(z)=d log¥Ã(z)/dz = ¥Ã'(z)/¥Ã(z), z>0
·Î Á¤Àǵǰí, polygamma functionÀº
¥÷(n)(z)=d n¥÷(z)/dzn , n=1,2,...
·Î °¢°¢ Á¤ÀǵȴÙ. ÀÌ ¶§,
¥÷(1)=-¥ã0=-0.577215... (¥ã0¸¦ Euler »ó¼ö¶ó ºÎ¸§)
¥÷(1)(1)=¥÷'(1)=¥ð2/6
ÀÓÀÌ ¾Ë·ÁÁ® Àִµ¥, À̸¦ ÀÌ¿ëÇϸé WÀÇ mgf·ÎºÎÅÍ WÀÇ ±â´ë°ª°ú ºÐ»êÀ» ±¸ÇÒ ¼ö ÀÖ´Ù