Á¦5Àå ÁÖ¿ä³»¿ë ¹× Áú¹®
5.1
Basic Concepts of Random Samples
[Q]
Definition 5.1.1 ÀÇ random sample Àº Ç¥ÁýÁ¶»ç(sampling survey)¿¡¼ÀÇ random
sample °ú ´Ù¸£´Ù. ¿Ö ´Ù¸£¸ç ¾î¶»°Ô ´Ù¸¥°¡?
5.2
Sums of Random Variables from a Random Sample
- Åë°è·®(statistic)°ú
Ç¥ÁýºÐÆ÷(sampling distribution)ÀÇ Á¤ÀÇ
- [Q]
À¯ÇѸðÁý´Ü¿¡¼ ºñº¹¿ø ÃßÃâÇßÀ» ¶§ Ç¥º»Æò±ÕÀÇ ºÐ»êÀº (¥ò2/n)ÀÌ ¾Æ´Ï°í (¥ò2/n)[(N-n)/(N-1)]ÀÓÀ» Áõ¸íÇϽÿÀ. ¶ÇÇÑ E(S2)=¥ò2 ÀÌ
¾Æ´Ï°í ¥ò2[N/(N-1)]
ÀÓµµ Áõ¸íÇϽÿÀ.
- convolution
formula: Theorem 5.2.9
- Example
5.2.10: For Cauchy distribution, the sample mean has the same distribution
as the individual observations. [Q] ÀÌ »ç½ÇÀº Á¤¸® 5.2.6¿¡ ¹èÄ¡µÇ´Â°¡?
5.3 Sampling from the Normal Distribution
- Á¤±Ô È®·üÇ¥º»(random sample from normal distribution)ÀÇ Ç¥º»Æò±Õ°ú
Ç¥º»ºÐ»êÀÇ µ¶¸³¼º Áõ¸í:
¿Í
´Â µ¶¸³ÀÓÀ» ÀÌ¿ëÇÏ¿© Áõ¸í. (¶Ç ´Ù¸¥ Áõ¸í: Lemma 5.3.3 (a)¿¡ ÀÇÇØ
¿Í
´Â ¸ðµç j(=1,...,n)¿¡ ´ëÇØ µ¶¸³ÀÌ´Ù. µû¶ó¼ Lemma 5.3.3 (b)¿¡ ÀÇÇØ
¿Í
Àº µ¶¸³À̰í
¿Í S2µµ µ¶¸³ÀÌ´Ù.)
- [Q] (n-1)S2/¥ò2 °¡
ÀÚÀ¯µµ n-1ÀÎ Ä«ÀÌÁ¦°ö ºÐÆ÷¸¦ °¡ÁüÀ» º¸ÀÏ ¶§ ¾î·Á¿î Á¡Àº ¹«¾ùÀΰ¡? [A]
ÀÌ ¼·Î µ¶¸³ÀÌ ¾Æ´Ï¶ó´Â Á¡. - Ä«ÀÌÁ¦°ö
ºÐÆ÷ÀÇ Á¤ÀÇ¿Í ¼ºÁú: Lemma 5.3.2
- tºÐÆ÷ÀÇ Á¤ÀÇ¿Í ¼ºÁú; FºÐÆ÷ÀÇ Á¤ÀÇ¿Í ¼ºÁú; tºÐÆ÷¿Í FºÐÆ÷ÀÇ °ü°è: (ÁÖÀÇ: Á¤¸® 5.3.8Àº pdf¸¦ ¾²Áö ¾Ê°í ºÐÆ÷ÀÇ Ç¥ÇöÀû
Á¤ÀÇ(representational definition)¸¦ ÀÌ¿ëÇÏ¿© Áõ¸íÇÑ´Ù.)
5.4 Order Statistics
- Æò±Õ°ú Áß¾Ó°ªÀÇ ºñ±³
- ÀÌ»êÇü ºÐÆ÷ÀÏ ¶§, X(j)ÀÇ cdf¿Í pmf: Theorem
5.4.3. Áõ¸í°úÁ¤ ¼÷ÁöÇÒ °Í
- ¿¬¼ÓÇü ºÐÆ÷ÀÏ ¶§, X(j)ÀÇ cdf¿Í pdf: Theorem
5.4.4. Áõ¸í°úÁ¤ ¼÷ÁöÇÒ °Í (¹ß°ßÀû(heuristic) Áõ¸í¹æ¹ýÀ»
¼ö¾÷½Ã°£¿¡ ¼³¸í)
- ¿¬¼ÓÇü ºÐÆ÷ÀÏ ¶§, X(i)¿Í X(j)ÀÇ joint pdf: Theorem
5.4.6. ¹ß°ßÀû(heuristic) Áõ¸í¹æ¹ýÀ» ¼ö¾÷½Ã°£¿¡ ¼³¸í
- n°³ÀÇ ¼ø¼Åë°è·®(order statistics)ÀÇ
joint pdf: [Q] ¾ö¹ÐÇÑ Áõ¸íÀº ¾î¶»°Ô?
- ±ÕÀÏºÐÆ÷ÀÇ j¹øÂ°
¼ø¼Åë°è·®(Example 5.4.5)°ú ¹üÀ§(Example 5.4.7)ÀÇ ºÐÆ÷´Â °¢°¢ º£Å¸ºÐÆ÷ÀÌ´Ù.
5.5
Convergence Concepts
- [Q]
Ç¥º»ÀÇ Å©±â nÀÌ ¹«ÇÑÈ÷ Ä¿Áú ¶§ÀÇ Åë°è·®ÀÇ ºÐÆ÷¿¡ ¿Ö °ü½ÉÀ» °®´Â°¡?
- °ÅÀÇ
È®½ÇÇÑ ¼ö·Å(almost sure convergence)°ú È®·ü¼ö·Å(convergence in probability)ÀÇ
±¸º°:
[Á¤¸®] almost sure convergence ¢¡ convergence in probability (see
Chung(1974) for the proof)
Á¤¸®ÀÇ ¿ªÀÌ ¹Ýµå½Ã ¼º¸³ÇÏÁö´Â ¾ÊÀ½À» º¸ÀÌ´Â ¿¹(counter example)¸¦
µé¾îº¸ÀÚ. (Example 5.5.8)
If a sequence of random variables converges in probability, there
is a subsequence that converges a.s. (see Chung(1974) for the proof)
- ºÐÆ÷¼ö·Å(convergence in distribution)ÀÇ Á¤ÀÇ: FX°¡ ¿¬¼ÓÀÎ Á¡¿¡¼¸¸ ¼ö·ÅÇÏ¸é µÈ´Ù. ([Q] ¿Ö ÀÌ·¸°Ô ¿¬¼ÓÀÎ Á¡¿¡¼¸¸
¼º¸³ÇÏ¸é µÇ´Â °ÍÀ¸·Î Á¤ÀÇÇÏ¿´À»±î?)
È®·ü¼ö·Å(convergence
in probability)°ú ºÐÆ÷¼ö·Å(convergence in distribution)ÀÇ ±¸º°: ºÐÆ÷¼ö·ÅÀº
È®·üº¯¼ö XnÀÇ ¼ö·ÅÀÌ
¾Æ´Ï°í XnÀÇ cdf FnÀÇ ¼ö·ÅÀÌ´Ù. ºÐÆ÷¼ö·ÅÀº È®·ü¼ö·Å°ú
´Þ¸® Xn°ú XÀÇ °áÇÕºÐÆ÷(joint
distribution)°¡ ÇÊ¿ä¾ø´Ù.
[¿¹]
¼º°øÈ®·üÀÌ 1/2ÀÎ n¹øÀÇ º£¸£´©ÀÌ ½ÃÇà¿¡¼ ¼º°øÈ½¼ö¸¦ X, ½ÇÆÐȽ¼ö¸¦ Y(=n-X)¶ó°í
Çϸé, X¿Í Y´Â ¼·Î ´Ù¸¥ °ªÀ» °®´Â È®·üº¯¼öÀÌÁö¸¸ ±× ºÐÆ÷´Â °°´Ù. ÀÌ ¿¹Á¦´Â
¼ö·Å¿¡ °üÇÑ ¿¹Á¦´Â ¾Æ´ÏÁö¸¸ È®·üº¯¼öÀÇ °ªÀÌ °°´Ù´Â °Í°ú ºÐÆ÷ÇÔ¼ö°¡ °°´Ù´Â
°ÍÀ» ±¸º°ÇØ¾ß ÇÑ´Ù´Â Á¡À» º¸¿©ÁØ´Ù.
[Á¤¸®]
convergence in probability ¢¡ convergence in distribution (see Chung(1974)
for the proof).
[Q] Á¤¸®ÀÇ ¿ªÀÌ ¹Ýµå½Ã ¼º¸³ÇÏÁö´Â ¾ÊÀ½À» º¸ÀÌ´Â ¿¹(counter
example)¸¦ µé¾îº¸ÀÚ.
ÇÏÁö¸¸ XnÀÌ
»ó¼ö c·Î ºÐÆ÷¼ö·ÅÇÏ´Â
°ÍÀº È®·ü¼ö·ÅÇÏ´Â °Í°ú µ¿µîÇÏ´Ù.
- Á߽ɱØÇÑÁ¤¸®(CLT)´Â ºÐÆ÷¼ö·Å¿¡ °üÇÑ Á¤¸®ÀÌ´Ù.
Á¤¸® 5.5.14´Â mgf°¡ Á¸ÀçÇÒ ¶§ÀÇ °æ¿ìÀε¥ º¸´Ù ÀϹÝÀûÀÎ Á¤¸®°¡
Á¤¸® 5.5.15 ÀÌ¸ç ´õ ÀϹÝÀûÀÎ Á¤¸® (XiµéÀÌ °°Àº ºÐÆ÷(identically distributed)¸¦ °®´Â´Ù´Â °¡Á¤À» ÇÒ ÇÊ¿ä¾øÀ½)µµ
°¡´ÉÇÏ´Ù. (Lindeberg-Feller Theorem, see Chung(1974) Theorem 7.2.1)
- Slutsky's Theorem°ú ÇÔ²² ´ÙÀ½ Á¤¸®µµ À¯¿ëÇÏ°Ô ¾²ÀδÙ.
Á¤¸®1: ÇÔ¼ö f°¡ ¿¬¼ÓÇÔ¼öÀ̰í XnÀÌ X·Î È®·ü¼ö·Å(ºÐÆ÷¼ö·Å)Çϸé f(Xn)ÀÌ f(X)·Î È®·ü¼ö·Å(ºÐÆ÷¼ö·Å)ÇÑ´Ù.
À§ Á¤¸®ÀÇ Àû¿ë ¿¹: Ç¥º»ºÐ»ê Sn2ÀÌ ¸ðºÐ»ê ¥ò2À¸·Î È®·ü¼ö·ÅÇÑ´Ù¸é À§ Á¤¸®¿¡ ÀÇÇØ SnÀÌ ¥òÀ¸·Î È®·ü¼ö·ÅÇÑ´Ù.
Á¤¸®2: ÇÔ¼ö f°¡ ½Ç¼ö°ªÀ» °®´Â ¿¬¼ÓÇÔ¼öÀ̰í È®·üº¤ÅÍ XnÀÌ
È®·üº¤ÅÍ X·Î È®·ü¼ö·Å(ºÐÆ÷¼ö·Å)Çϸé
È®·üº¯¼ö f(Xn)ÀÌ È®·üº¯¼ö f(X)·Î
È®·ü¼ö·Å(ºÐÆ÷¼ö·Å)ÇÑ´Ù.
À§ Á¤¸®ÀÇ Àû¿ë ¿¹: È®·üº¤ÅÍ ( Xn, Yn)ÀÌ
(¥ì1,¥ì2)·Î È®·ü¼ö·ÅÇÏ°í ¥ì2¡Á0 À̸é, Xn/YnÀº ¥ì1/¥ì2·Î È®·ü¼ö·ÅÇÑ´Ù. (ÀÌ ¿¹´Â Slutsky
TheoremÀ¸·Îµµ Áõ¸í °¡´É)
- Delta method
- È®·üº¯¼ö XÀÇ ºÐÆ÷¸¦ ¾Ë ¶§, »õ·Î¿î È®·üº¯¼ö g(X)ÀÇ
±Ù»çÀûÀÎ ºÐÆ÷¸¦ ¾î¶»°Ô
±¸ÇÒ ¼ö Àִ°¡¿¡ ´ëÇÑ ³»¿ëÀÌ´Ù( Bickel and Doksum (1977), 461ÂÊ A.14.17 ÂüÁ¶). ¿¹¸¦ µé¾î Ç¥º»ºñÀ² pÀÇ ºÐ»êÀÌ ¥ð(1-¥ð)/n
ÀÏ ¶§, logit(p)=log(p/(1-p))ÀÇ ºÐ»êÀº ´ë·« ¾ó¸¶Àϱî? ÇÔ¼ö gÀÇ ±Ù»ç°ªÀ¸·Î
1Â÷Ç×±îÁöÀÇ Taylor Series °ªÀ» ÀÌ¿ëÇϸé, g(X)ÀÇ ±Ù»çÀûÀÎ ºÐ»êÀ» ±¸ÇÒ
¼ö ÀÖ´Ù.
- ´Üº¯·® È®·üº¯¼ö X¿¡ °üÇÑ »ç½ÇÀ» È®·üº¤ÅÍ X·Î È®ÀåÇÏ¿´´Ù (Á¤¸® 5.5.28).
- Q. È®·üº¯¼ö XÀÇ Æò±Õ°ú ºÐ»êÀ» ¾Ë ¶§ g(X)ÀÇ Æò±Õ°ú
ºÐ»êÀº ¾î¶»°Ô ¾Ë ¼ö ÀÖ³ª? A. Á¤È®ÇÑ °ªÀÌ ¾Æ´Ñ ±Ù»ç°ª(nÀÌ Å¬ ¶§ Á¤È®ÇÑ
°ª¿¡ ¼ö·ÅÇÏ´Â °ª)Àº ÀÏÂ÷Å×ÀÏ·¯±Þ¼ö(the first-order Taylor series expansion)¸¦
ÀÌ¿ëÇÏ¿© ½±°Ô ±¸ÇÒ ¼ö ÀÖ´Ù. ((5.5.8)½Ä°ú (5.5.9)½Ä)
- Q. È®·üº¯¼ö XnÀÌ Á¤±ÔºÐÆ÷¿¡ ¼ö·ÅÇÑ´Ù¸é g(Xn)ÀÇ ºÐÆ÷´Â? A. µ¨Å¸¹æ¹ý¿¡ ÀÇÇϸé g(Xn)ÀÇ ºÐÆ÷µµ Á¤±ÔºÐÆ÷¿¡ ¼ö·ÅÇÔÀ» º¸ÀÏ ¼ö ÀÖ´Ù. µ¨Å¸¹æ¹ýÀº Á߽ɱØÇÑÁ¤¸®¸¦
È®Àå½ÃŲ °ÍÀ¸·Î º¼ ¼ö ÀÖÀ¸¸ç, ÀÏÂ÷Å×ÀÏ·¯±Þ¼ö(the first-order Taylor
series expansion)¿Í Slutsky Á¤¸®·ÎºÎÅÍ À¯µµµÈ´Ù (Á¤¸® 5.5.24¿Í Áõ¸í)
- ÀÌÂ÷µ¨Å¸¹æ¹ý(second-order Delta method, Á¤¸® 5.5.26)°ú ´Ùº¯·®µ¨Å¸¹æ¹ý(multivariate
delta method, Á¤¸® 5.5.28)
- ¿ÀÁî(odds)¿Í ¿ÀÁîºñ(odds ratio)ÀÇ ÀǹÌ; ÃßÁ¤¿ÀÁîÀÇ ºÐ»ê ±¸Çϱâ:
¿¹5.5.19, ¿¹5.5.22.
5.6 Generating a Random Sample
- ±ÕÀÏºÐÆ÷ ³¼ö (uniform random number)¸¦ ÀÌ¿ëÇÏ¿© ¿øÇÏ´Â ºÐÆ÷¸¦
°®´Â ³¼ö¸¦ »ý¼ºÇÏ´Â ¹æ¹ýÀ» Á÷Á¢ÀûÀÎ ¹æ¹ý(direct methods)¿Í °£Á¢ÀûÀÎ ¹æ¹ý(indirect
methods)·Î ³ª´©¾î ¼³¸í.
- Á÷Á¢ÀûÀÎ ¹æ¹ý: È®·üÀûºÐº¯È¯(probability integral transform)¿¡
ÀÇÇØ Áö¼öºÐÆ÷ ³¼ö¸¦ »ý¼ºÇÒ ¼ö ÀÖ°í, µû¶ó¼ ¦¼ö ÀÚÀ¯µµ¸¦ °®´Â Ä«ÀÌÁ¦°öºÐÆ÷,
°¨¸¶ºÐÆ÷, º£Å¸ºÐÆ÷ ³¼ö¸¦ »ý¼ºÇÒ ¼ö ÀÖ´Ù - (5.6.5).
- ´ÝÈù Çü½Ä(closed-form)ÀÇ F-1(u)¸¦ ±¸ÇÒ ¼ö ¾øÀ» ¶§: ¿¹ 5.6.4 ¶Ç´Â °£Á¢ÀûÀÎ ¹æ¹ýÀ» ÀÌ¿ë
- ÀÌ»êÇü ºÐÆ÷ÀÇ ³¼ö »ý¼º ¹æ¹ý: (5.6.7), ¿¹ 5.6.5, ¿¹ 5.6.6.
Q. ´ÙÇ×ºÐÆ÷(multinomial distribution)¸¦ °®´Â ³¼ö¸¦ ¾î¶»°Ô
»ý¼ºÇÒ ¼ö ÀÖ³ª?
- °£Á¢ÀûÀÎ ¹æ¹ý
Accept/Reject Algorithm: ¿¹ 5.6.7·Î ¾ÆÀ̵ð¾î ¼³¸í. Á¤¸® 5.6.8°ú
¿¹ 5.6.9. (¿¹ 5.6.7Àº VÀÇ ºÐÆ÷°¡ ±ÕÀÏºÐÆ÷ U(0,1)ÀΠƯ¼öÇÑ °æ¿ì·Î
º¼ ¼ö ÀÖÀ½)
Á¤¸® 5.6.8·ÎºÎÅÍ, ¿øÇÏ´Â ºÐÆ÷ÀÇ ³¼ö Çϳª¸¦ »ý¼ºÇϱâ À§ÇØ
ÇÊ¿äÇÑ ½ÃÇàȽ¼öÀÇ ±â´ë°ªÀÌ MÀÓÀ» ¾Ë ¼ö ÀÖÀ½ (Á¤¸® 5.6.8 ´ÙÀ½ ¹®´Ü¿¡
ÀÖ´Â ³»¿ë ÂüÁ¶)
Metropolis algorithm: Á¤¸® 5.6.8¿¡¼ À¯ÇÑÇÑ M°ªÀ» °®´Â candidate
density fV¸¦ ãÀ» ¼ö ¾øÀ» ¶§ Àû¿ëÇÒ ¼ö ÀÖ´Â ¹æ¹ý. Áõ¸íÀº »ý·«. ³¼öÀÇ ¼ö¿
Z1, Z2, ...ÀÌ »ý¼ºµÇ¸ç Ãʱ⿡
»ý¼ºµÈ ³¼ö´Â ¾µ ¼ö ¾øÀ½. ¾ó¸¶³ª ¸¹Àº ³¼ö¸¦ ¹ö·Á¾ß ÇÏ´ÂÁö¸¦ ¾Ë ¼ö ÀÖ´Â
¹æ¹ýÀÌ ÇÊ¿ä.
Á¦5Àå ¿¬½À¹®Á¦(¼÷Á¦)
1 2 6 10 13 14 17 18
29 30
31 32 35 43 44 47 48 49
50 56 60 (There are typos in Exercise 5.44, and 5.60)
Typo in 5.44: In (c), 2n should be 4n
Typo in 5.60: P(W<w) should be P(X<w, Y<f(X))